9 research outputs found

    Spiking Central Pattern Generators through Reverse Engineering of Locomotion Patterns

    Get PDF
    In robotics, there have been proposed methods for locomotion of nonwheeled robots based on artificial neural networks; those built with plausible neurons are called spiking central pattern generators (SCPGs). In this chapter, we present a generalization of reported deterministic and stochastic reverse engineering methods for automatically designing SCPG for legged robots locomotion systems; such methods create a spiking neural network capable of endogenously and periodically replicating one or several rhythmic signal sets, when a spiking neuron model and one or more locomotion gaits are given as inputs. Designed SCPGs have been implemented in different robotic controllers for a variety of robotic platforms. Finally, some aspects to improve and/or complement these SCPG-based locomotion systems are pointed out

    A Methodology for Classifying Search Operators as Intensification or Diversification Heuristics

    Get PDF
    Selection hyper-heuristics are generic search tools that dynamically choose, from a given pool, the most promising operator (low-level heuristic) to apply at each iteration of the search process. The performance of these methods depends on the quality of the heuristic pool. Two types of heuristics can be part of the pool: diversification heuristics, which help to escape from local optima, and intensification heuristics, which effectively exploit promising regions in the vicinity of good solutions. An effective search strategy needs a balance between these two strategies. However, it is not straightforward to categorize an operator as intensification or diversification heuristic on complex domains. Therefore, we propose an automated methodology to do this classification. This brings methodological rigor to the configuration of an iterated local search hyper-heuristic featuring diversification and intensification stages. The methodology considers the empirical ranking of the heuristics based on an estimation of their capacity to either diversify or intensify the search. We incorporate the proposed approach into a state-of-the-art hyper-heuristic solving two domains: course timetabling and vehicle routing. Our results indicate improved performance, including new best-known solutions for the course timetabling problem

    Improving the Bin Packing Heuristic through Grammatical Evolution Based on Swarm Intelligence

    Get PDF
    In recent years Grammatical Evolution (GE) has been used as a representation of Genetic Programming (GP) which has been applied to many optimization problems such as symbolic regression, classification, Boolean functions, constructed problems, and algorithmic problems. GE can use a diversity of searching strategies including Swarm Intelligence (SI). Particle Swarm Optimisation (PSO) is an algorithm of SI that has two main problems: premature convergence and poor diversity. Particle Evolutionary Swarm Optimization (PESO) is a recent and novel algorithm which is also part of SI. PESO uses two perturbations to avoid PSO’s problems. In this paper we propose using PESO and PSO in the frame of GE as strategies to generate heuristics that solve the Bin Packing Problem (BPP); it is possible however to apply this methodology to other kinds of problems using another Grammar designed for that problem. A comparison between PESO, PSO, and BPP’s heuristics is performed through the nonparametric Friedman test. The main contribution of this paper is proposing a Grammar to generate online and offline heuristics depending on the test instance trying to improve the heuristics generated by other grammars and humans; it also proposes a way to implement different algorithms as search strategies in GE like PESO to obtain better results than those obtained by PSO

    Gestión del conocimiento: perspectiva multidisciplinaria. Volumen 11

    Get PDF
    El libro “Gestión del Conocimiento. Perspectiva Multidisciplinaria”, Volumen 11, de la Colección Unión Global, es resultado de investigaciones. Los capítulos del libro, son resultados de investigaciones desarrolladas por sus autores. El libro cuenta con el apoyo de los grupos de investigación: Universidad Sur del Lago “Jesús María Semprúm” (UNESUR), Zulia – Venezuela; Universidad Politécnica Territorial de Falcón Alonso Gamero (UPTAG), Falcón – Venezuela; Universidad Politécnica Territorial de Mérida Kleber Ramírez (UPTM), Mérida – Venezuela; Universidad Guanajuato (UG) - Campus Celaya - Salvatierra - Cuerpo Académico de Biodesarrollo y Bioeconomía en las Organizaciones y Políticas Públicas (C.A.B.B.O.P.P), Guanajuato – México; Centro de Altos Estudios de Venezuela (CEALEVE), Zulia – Venezuela, Centro Integral de Formación Educativa Especializada del Sur (CIFE - SUR) - Zulia - Venezuela, Centro de Investigaciones Internacionales SAS (CIN), Antioquia - Colombia.y diferentes grupos de investigación del ámbito nacional e internacional que hoy se unen para estrechar vínculos investigativos, para que sus aportes científicos formen parte de los libros que se publiquen en formatos digital e impreso

    Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution

    Get PDF
    This paper deals with the design of Spiking Central Pattern Generators (SCPGs) to achieve locomotion at different frequencies in legged robots and their hardware implementation in a FPGA and validation on a real hexapod robot. Herein, the SCPGs are automatically designed by a Christiansen Grammar Evolution (CGE)-based methodology. It is, the CGE performs a solution for the configurations (synaptic weights and connections) of each neuron in the SCPG. This is carried out through the indirect representation of a candidate solution that evolves to replicate a specific spike train according to a locomotion pattern (gait) by measuring the similarity between the spike train with the SPIKE-Distance to drive the search to a correct configuration. By using this evolutionary approach, several SCPG design specifications can be explicitly added into the fitness function to achieve the SPIKE-distance criteria, such as: looking for SNNs with minimal connectivity or a CPG able to generate different locomotion gaits only by changing the initial input stimuli. The SCPG designs have been successfully implemented on a Spartan 6 FPGA board and a real time validation on a 12 DOFs hexapod robot is presented

    Application of agglomerative and partitional algorithms for the study of the phenomenon of the collaborative economy within the tourism industry

    No full text
    This research discusses the application of two different clustering algorithms (agglomerative and partitional) to a set of data derived from the phenomenon of the collaborative economy in the tourism industry known as Airbnb. In order to analyze this phenomenon, the algorithms are known as “hierarchical Tree” and “K-Means” were used with the objective of gaining a better understanding of the spatial configuration and current functioning of this complimentary lodging offer. The city of Guanajuato, Mexico was selected as the case for convenience purposes and the main touristic attractions were used as parameters to conduct the analysis. Cluster techniques were applied to both algorithms and the results were statistically compared

    Exploring random permutations effects on the mapping process for grammatical evolution

    No full text
    Grammatical Evolution (GE) is a form of Genetic Programming (GP) based on Context-Free Grammar (CF Grammar). Due to the use of grammars, GE is capable of creating syntactically correct solutions. GE uses a genotype encoding and is necessary to apply a Mapping Process (MP) to obtain the phenotype representation. There exist some well-known MPs in the state-of-art like Breadth-First (BF), Depth-First (DF), among others. These MPs select the codons from the genotype in a sequential manner to do the mapping. The present work proposes a variation in the selection order for genotype’s codons; to achieve that, it is applied a random permutation for the genotype’s codons order-taking in the mapping. The proposal’s results were compared using a statistical test with the results obtained by the traditional BF and DF using the Symbolic Regression Problem (SRP) as a benchmark

    References

    No full text

    Protection for the Amino Group

    No full text
    corecore